Mathematics for Computer Science

TD2

September 17th, 2025

Question. Write below the closed formula for J(n) and its complete formal proof.

Let us recall some intermediate results on J(n):

Lemma 1. For all $n \in \mathbb{N}^*$, we have

$$J(2n) = 2J(n) - 1 \tag{\spadesuit}$$

$$J(2n+1) = 2J(n) + 1.$$
 (*)

Proof. Let $n \in \mathbb{N}^*$. Suppose 2n people are standing in a circle and start killing each other according to the rebels' rules. After n kills, all the people with even numbers are dead and only the people with odd numbers remain, meaning there are exactly n people left. Moreover, at this stage, the first person has to kill next, so we know that the surviving person is the $J(n)^{\text{th}}$ person standing in the reduced circle. This person is labelled the $J(n)^{\text{th}}$ odd number, which is 2J(n) - 1. According to the definition of the Josephus number, the person who survives in a group of 2n people is J(2n), which is 2J(n) - 1, giving us identity (♠).

A similar argument can be used to show the other identity: suppose 2n + 1 people are standing. After n kills, everyone with an even number is dead. For the $(n + 1)^{th}$ kill, the person labelled 2n + 1 kills number 1: there are now n people left standing, and these are exactly the odd numbers except for 1. We know that the surviving person is the $J(n)^{th}$ person standing in the reduced circle. This person is labelled the $(J(n) + 1)^{th}$ odd number (since the first odd number, 1, is already dead), which is 2J(n) + 1. According to the definition of the Josephus number, the person who survives in a group of 2n + 1 people is J(2n + 1), which is 2J(n) + 1, proving identity (\P) .

We are now ready to establish a closed formula for Josephus number.

Proof. We will prove by induction that:

$$\forall k \in \mathbb{N}, \quad \forall i \in [0, 2^k - 1], J(2^k + i) = 2i + 1.$$

Base case: at $k \stackrel{\text{def}}{=} 0$, the set $[0, 2^k - 1]$ is reduced at {0}. Therefore, we only have one case to check: $i \stackrel{\text{def}}{=} 0$. We have

$$J(2^k + i) = J(2^0 + 0) = J(1) = 1 = 2 \cdot 0 + 1 = 2i + 1$$

so, for the base case $k \stackrel{\text{def}}{=} 0$, we have shown that for any $i \in [0, 2^k - 1]$, $J(2^k + i) = 2i + 1$.

- *Induction step*: let $k \in N$ be such that for any $j \in [0, 2^k 1]$, $J(2^k + j) = 2j + 1$. To show the induction step, we will have to show that for any $i \in [0, 2^{k+1} 1]$, $J(2^{k+1} + i) = 2i + 1$. Thus, we take $i \in [0, 2^{k+1} 1]$. We can then distinguish between two cases:
 - *If* i *si even*: we write i=2m for some $m \in \mathbb{N}$. In particular, by assumption on i we have $0 \le 2m \le 2^{k+1}$, thus $m \in [0, 2^k 1]$. We then have:

$$J(2^{k+1} + i) = J(2(2^k + m))$$

$$= 2J(2^k + m) - 1$$

$$= 2(2m + 1) - 1$$
(by **Lemma 1**, identity (\spadesuit))
$$= 2i + 1.$$

• If i si odd: we write i = 2m + 1 for some $m \in \mathbb{N}$. In particular, by assumption on i we have $0 \le 2m + 1 \le 2^{k+1}$, thus $m \in [0, 2^k - 1]$. We then have:

$$J\left(2^{k+1}+i\right)=J\left(2\left(2^k+m\right)+1\right)$$
 (by **Lemma 1**, identity (\P))
$$=2J\left(2^k+m\right)+1$$
 (by induction hypothesis and the fact that $0 \le m \le 2^k-1$)
$$=2i+1.$$

In both cases, we have shown that $J(2^{k+1}+i)=2i+1$ for any $i\in [0,2^{k+1}-1]$, which means that our induction hypothesis holds at rank k+1.

▶ *Conclusion*: by induction principle, we have that

$$\forall k \in \mathbb{N}, \quad \forall i \in [0, 2^k - 1], J(2^k + i) = 2i + 1.$$

In particular, for all $n \in \mathbb{N}^*$, we can write n as $n = 2^r + \ell$, in such way that 2^r is the *largest possible power of two that fits in* n and $\ell \in [0, 2^r - 1]$. Applying the result shown by induction, we have

$$J(n) = J(2^r + \ell) = 2\ell + 1.$$

Remarks.

▶ By the definition we gave of r as being the only natural number such that $2^r \le n < 2^{r+1}$, we have that r is the unique natural number satisfying

$$r \le \log_2(n) < r + 1$$

thus, $r = \lfloor \log_2(n) \rfloor$. This property gives also an expression for ℓ :

$$\ell = n - 2^{\left\lfloor \log_2(n) \right\rfloor}$$

and therefore we can express J(n) as:

$$J(n) = 2\left(n - 2^{\lfloor \log_2(n) \rfloor}\right) + 1.$$

 \triangleright If n is a number written in base 2,

$$n = (1 \underbrace{\alpha_{r-1}\alpha_{r-2}\cdots\alpha_1\alpha_0}_{\text{sequence of 0's and 1's}})_{\text{base 2}} \qquad \text{and we have} \qquad J(n) = (\underbrace{\alpha_{r-1}\alpha_{r-2}\cdots\alpha_1\alpha_0}_{\text{same }r \text{ lats bits of }n} 1)_{\text{base 2}}.$$

Indeed, the number defined by the sequence $(\alpha_{r-1}\alpha_{r-2}\cdots\alpha_1\alpha_0)_{base2}$ is exactly what remains of n when we have removed the largest power of 2 (represented by the first bit of n), therefore $(\alpha_{r-1}\alpha_{r-2}\cdots\alpha_1\alpha_0)_{base2} = \ell$. Computing the n^{th} Josephus number involves the base two representation of ℓ by two and adding one. This is exactly the same as putting a one at the end of the base two representation of ℓ .