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Question. Write below the closed formula for J (n) and its complete formal proof.

Let us recall some intermediate results on J(n) :

Lemma 1. For all n ∈N∗, we have

J (2n) = 2J (n)−1 (♠)

J (2n +1) = 2J (n)+1. (♥)

Proof. Let n ∈N∗. Suppose 2n people are standing in a circle and start killing each other according to the rebels’ rules.
After n kills, all the people with even numbers are dead and only the people with odd numbers remain, meaning there
are exactly n people left. Moreover, at this stage, the first person has to kill next, so we know that the surviving person
is the J (n)th person standing in the reduced circle. This person is labelled the J (n)th odd number, which is 2J (n)−1.
According to the definition of the Josephus number, the person who survives in a group of 2n people is J (2n), which
is 2J(n)−1, giving us identity (♠).

A similar argument can be used to show the other identity: suppose 2n + 1 people are standing. After n kills,
everyone with an even number is dead. For the (n +1)th kill, the person labelled 2n +1 kills number 1: there are now
n people left standing, and these are exactly the odd numbers except for 1. We know that the surviving person is the
J (n)th person standing in the reduced circle. This person is labelled the (J (n)+1)th odd number (since the first odd
number, 1, is already dead), which is 2J(n)+1. According to the definition of the Josephus number, the person who
survives in a group of 2n +1 people is J(2n +1), which is 2J (n)+1, proving identity (♥).

We are now ready to establish a closed formula for Josephus number.

Proof. We will prove by induction that:

∀k ∈N, ∀i ∈ q
0,2k −1

y
, J

(
2k + i

)
= 2i +1.

▷ Base case : at k
def= 0, the set

q
0,2k −1

y
is reduced at {0}. Therefore, we only have one case to check: i

def= 0. We have

J
(
2k + i

)
= J

(
20 +0

)= J (1) = 1 = 2 ·0+1 = 2i +1

so, for the base case k
def= 0, we have shown that for any i ∈ q

0,2k −1
y

, J
(
2k + i

)= 2i +1.

▷ Induction step : let k ∈ N be such that for any j ∈ q
0,2k −1

y
, J

(
2k + j

) = 2 j +1. To show the induction step, we will

have to show that for any i ∈ q
0,2k+1 −1

y
, J

(
2k+1 + i

)= 2i +1. Thus, we take i ∈ q
0,2k+1 −1

y
. We can then distinguish

between two cases:

• If i si even : we write i = 2m for some m ∈ N. In particular, by assumption on i we have 0 ≤ 2m ≤ 2k+1, thus
m ∈ q

0,2k −1
y

. We then have:

J
(
2k+1 + i

)
= J

(
2
(
2k +m

))
= 2J

(
2k +m

)
−1 (by Lemma 1, identity (♠))

= 2(2m +1)−1 (by induction hypothesis and the fact that 0 ≤ m ≤ 2k −1)

= 2i +1.
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• If i si odd : we write i = 2m+1 for some m ∈N. In particular, by assumption on i we have 0 ≤ 2m+1 ≤ 2k+1, thus
m ∈ q

0,2k −1
y

. We then have:

J
(
2k+1 + i

)
= J

(
2
(
2k +m

)
+1

)
= 2J

(
2k +m

)
+1 (by Lemma 1, identity (♥))

= 2(2m +1)+1 (by induction hypothesis and the fact that 0 ≤ m ≤ 2k −1)

= 2i +1.

In both cases, we have shown that J
(
2k+1 + i

) = 2i +1 for any i ∈ q
0,2k+1 −1

y
, which means that our induction hy-

pothesis holds at rank k +1.

▷ Conclusion : by induction principle, we have that

∀k ∈N, ∀i ∈ q
0,2k −1

y
, J

(
2k + i

)
= 2i +1.

In particular, for all n ∈N∗, we can write n as n = 2r +ℓ, in such way that 2r is the largest possible power of two that
fits in n and ℓ ∈ J0,2r −1K. Applying the result shown by induction, we have

J (n) = J
(
2r +ℓ)= 2ℓ+1.

Remarks.

▷ By the definition we gave of r as being the only natural number such that 2r ≤ n < 2r+1, we have that r is the unique
natural number satisfying

r ≤ log2(n) < r +1

thus, r = ⌊
log2(n)

⌋
. This property gives also an expression for ℓ:

ℓ= n −2⌊log2(n)⌋

and therefore we can express J(n) as:

J (n) = 2
(
n −2⌊log2(n)⌋)+1.

▷ If n is a number written in base 2,

n = (1αr−1αr−2 · · ·α1α0︸ ︷︷ ︸
sequence of 0’s and 1’s

)base 2 and we have J (n) = (αr−1αr−2 · · ·α1α0︸ ︷︷ ︸
same r lats bits of n

1)base 2.

Indeed, the number defined by the sequence (αr−1αr−2 · · ·α1α0)base2 is exaclty what remains of n when we have
removed the largest power of 2 (represented by the first bit of n), therefore (αr−1αr−2 · · ·α1α0)base2 = ℓ. Computing
the nth Josephus number involves the base two representation of ℓ by two and adding one. This is exactly the same
as putting a one at the end of the base two representation of ℓ.
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